contoh soal final beserta jawaban Analisa Sistem Tenaga


UJIAN AKHIR SEMESTER

 

1.     Gambar di bawah memperlihatkan diagram segaris dari system tenaga 5-bus. Data saluran transmisi diperlihatkan pada Tabel. Semua data adalah dalam pu pada dasar 100 MVA.

 

                                    Gambar Sistem Tenaga 5 Bus

 

Tabel Data Saluran

 

Bus-Ke-Bus

p – q

Impedansi Seri

zpq

1 – 2

0,02 + j0,ab

1 – 3

0,08 + j0,24

2 – 3

0,06 + j0,18

2 – 4

0,ab + j0,18

2 – 5

0,04 + j0,12

3 – 4

0,01 + j0,03

4 – 5

0,08 + j0,24

 

 

 

 

 

Table data bus :

 

Bus code

Assumade bus

voltage

Generation

Load

 

MW

 

MVAR

 

MW

 

MVAR

1

1.06 + j0.0

0

0

0

0

2

1.00 + j0.0

40

30

20

10

3

1.00 + j0.0

0

0

45

15

4

1.00 + j0.0

0

0

40

5

5

1.00 + j0.0

0

0

60

10

 

Berdasarkan data tersebut, tentukan:

a.   Admitansi-admitansi diri, Y11, Y22, Y33, Y44, Y55.

b.   Admitansi-admitansi bersama antar bus

c. Matriks admitansi bus Ybus.

  d. Vektor dari sudut/besar tegangan bus dan selisih daya (power mismatch).

  e. Tuliskan rumus untuk elemen-elemen dari vektor selisih daya.

  f. Tuliskan rumus untuk matriks Jacobian.

  g. Tuliskan persamaan iteratif Newton-Raphson untuk solusi aliran daya.

  h. Lakukan perhitungan iterasi Newton Raphson sebanyak 5 iterasi (boleh

      menggunakan Matlab atau Exel).

   i.Tunjukkan hasil perhitungan aliran daya yang saudara dapatkan dari 5 iterasi tersebut.

 

Catatan :

·       Untuk Impedansi 1 – 2 nilai imajinernya dengan huruf ab merupakan dua angka terakhir NIM masing-masing

·       Untuk Impedansi 2 – 4 nilai realnya dengan huruf ab merupakan dua angka terakhir NIM masing-masing

 

 

 

Jawab :

Admintansi Seri :

 

p-q

1-2

15,38-j23,07

1-3

1,25 – j3,75

2-3

1,66 – j4,99

2-4

0,90-J5,40

2-5

2,50 – j7,50

3-4

9,99 – j29,99

4-5

1,25-j3,73

 

a.)   Admitansi Diri Y11,Y22,Y33,Y44,Y55

 

Y11       = Y12+Y13

                  = (15,38-j23,07) + (1,25  - 3,75 j)

            = 16,63 j6,82j

 

Y22       = Y12 + Y23 + Y24 + Y25

            = ( 15,38-j23,07) + (1,66 – 4,99 j) + ( 1,18-j5,29)+(2,50 – 7,50j)

            = 20,72j40,85

 

Y33       = Y13+ Y23+ Y34

            = (1,25 – 3,75 j) + (1,66 – 4,99 j) + (9,99 – 29,99 j)

            =12,9 – 38,73 j

 

Y44          = Y24+ Y34+ Y45

            =  (0,90 J5,40) + (9,99 – 29,99 j) + (1,25-3,73 j)

            = 12,14j 39,12

 

Y55       = Y25 + Y45

            = ( 2,50 – 7,50 j) + ( 1,25-3,73 j )

            = 3,75 – 11,25 j

 

 

 

b) Admitansi – admitansi bersama antar bus

 

Y12       = Y21 = - Y12 = -15,38 + j23,07

Y13 = Y31 = - Y13 = -1,25 + 3,75 j

Y14 = Y41 = 0

Y15 = Y51 = 0

 

Y23 = Y32 = - Y23  = -1,66 + 4,99 j

Y24 = Y42 = - Y24  = -0,90 + J5,40

Y25 = Y52 = -Y25 = -2,50 + 7,50 j

 

Y34   = Y43  = - Y34   = -9,99 + 29,99 j

Y35   = Y53   = 0

 

Y45   = Y54   + -Y45   = -1,25 + 3,75 j

 

c) Matriks admitansi bus Ybus.

 

Y =

 

d) Vektor dari sudut/besar tegangan bus dan selisih daya (power mismatch).

Jawab: oleh karena bus 1 dengan tegangan 1.06 maka disebut bus slack dan bus 3 adalah bus PV , maka vector dari sudut/besar tegangann bus dan vector dari selisih daya adalah :

e) Tuliskan rumus untuk elemen-elemen dari vektor selisih daya.

Jawab :

 

 

 

 

  

   

    

 

f) Tuliskan rumus untuk matriks Jacobian.

Jawab :

 

 

 

 

g) Tuliskan persamaan iteratif Newton-Raphson untuk solusi aliran daya

Jawab :

h) Lakukan perhitungan iterasi Newton Raphson sebanyak 5 iterasi (boleh      menggunakan Matlab atau Exel).

Ø  Jawab : program menggunakan matlab

 

clear

clc

format short

 

% Diketahui nilai Impedansi

z = [0.02+j*0.03;0.08 + j*0.24;0.06 + j*0.18;]

 

%Data Bus

V1=1.06

delta1=0.00

PL1=0.00

QL1=0.00

V2=1.00

PG2=40

PL2=30

QL2=20

PG3=0.00

QG3=45

PL3=60

QL3=15.38

 

 

%Mencari admitansi saluran

y = 1./z

 

%Menyocokkan urutan admitansi saluran

y12=y(1,1)

y13=y(2,1)

y23=y(3,1)

 

 

%Membuat matrik admitansi bus

Ybus = [y12+y13 -y12 -y13;...

    -y12 y12+y23 -y23;...

    -y13 -y23 y13 + y23]

 

Y = abs(Ybus)

Teta = angle(Ybus);

 

 

% Iterasi ke-0

 

delta2=0.00

delta3=0.00

V3=1.00

Vektor_Tegangan_Awal = [delta2;delta3;V3]

 

 

%Perhitungan Power Mismatch dengan estimasi awal

P2 = -PG2 + PL2...

+ (V2*Y(2,1)*(V1)*cos(delta2-delta1-Teta(2,1)))...

+ (V2*Y(2,2)*(V2)*cos(delta2-delta2-Teta(2,2)))...

+ (V2*Y(2,3)*(V3)*cos(delta2-delta3-Teta(2,3)));

 

P3 = -PG3 + PL3...

+ (V3*Y(3,1)*V1*cos(delta3-delta1-Teta(3,1)))...

+ (V3*Y(3,2)*V2*cos(delta3-delta2-Teta(3,2)))...

+ (V3*Y(3,3)*V3*cos(delta3-delta3-Teta(3,3)));

 

Q3 = PG3 + PL3...

+ (V3*Y(3,1)*V1*sin(delta3-delta1-Teta(3,1)))...

+ (V3*Y(3,2)*V2*sin(delta3-delta2-Teta(3,2)))...

+ (V3*Y(3,3)*V3*sin(delta3-delta3-Teta(3,3)));

 

Vektor_Power_Mismatch = [P2;P3;Q3]

 

%Sehingga Matrik Jakobian Menjadi :

Jakobi_11 = V1*V2*Y(2,1)*sin(Teta(2,1) + delta1 - delta2) + V2*V3*Y(2,3)*sin(Teta(2,3) - delta2 + delta3)

Jakobi_12 = -V2*V3*Y(2,3)*sin(Teta(2,3) - delta2 + delta3)

Jakobi_13 = V2*Y(2,3)*cos(Teta(2,3) - delta2 + delta3)

Jakobi_21 = -V2*V3*Y(3,2)*sin(Teta(3,2) + delta2 - delta3)

Jakobi_22 = V1*V3*Y(3,1)*sin(Teta(3,1) + delta1 - delta3) + V2*V3*Y(3,2)*sin(Teta(3,2) + delta2 - delta3)

Jakobi_23 = V1*Y(3,1)*cos(Teta(3,1) + delta1 - delta3) + V2*Y(3,2)*cos(Teta(3,2) + delta2 - delta3) + 2*V3*Y(3,3)*cos(Teta(3,3))

Jakobi_31 = -V2*V3*Y(3,2)*cos(Teta(3,2) + delta2 - delta3)

Jakobi_32 = V1*V3*Y(3,1)*cos(Teta(3,1) + delta1 - delta3) + V2*V3*Y(3,2)*cos(Teta(3,2) + delta2 - delta3)

Jakobi_33 = - V1*Y(3,1)*sin(Teta(3,1) + delta1 - delta3) - V2*Y(3,2)*sin(Teta(3,2) + delta2 - delta3) - 2*V3*Y(3,3)*sin(Teta(3,3))

 

Jakobian = [Jakobi_11 Jakobi_12 Jakobi_13;Jakobi_21 Jakobi_22 Jakobi_23;Jakobi_31 Jakobi_32 Jakobi_33]

 

 

% Nilai-nilai koreksi untuk estimasi solusi:

 

Inverse_Jakobian = inv(Jakobian)

Nilai_Koreksi_Vektor_Tegangan = Inverse_Jakobian*Vektor_Power_Mismatch

 

% Nilai estimasi Iterasi ke-1

disp ('Iterasi 1')

 

Vektor_Tegangan_Baru = Vektor_Tegangan_Awal + Nilai_Koreksi_Vektor_Tegangan

 

delta2 = Vektor_Tegangan_Baru(1,1)

delta3 = Vektor_Tegangan_Baru(2,1)

V3 = Vektor_Tegangan_Baru(3,1)

 

P2 = -PG2 + PL2...

+ (V2*Y(2,1)*(V1)*cos(delta2-delta1-Teta(2,1)))...

+ (V2*Y(2,2)*(V2)*cos(delta2-delta2-Teta(2,2)))...

+ (V2*Y(2,3)*(V3)*cos(delta2-delta3-Teta(2,3)));

 

P3 = -PG3 + PL3...

+ (V3*Y(3,1)*V1*cos(delta3-delta1-Teta(3,1)))...

+ (V3*Y(3,2)*V2*cos(delta3-delta2-Teta(3,2)))...

+ (V3*Y(3,3)*V3*cos(delta3-delta3-Teta(3,3)));

 

Q3 = PG3 + PL3...

+ (V3*Y(3,1)*V1*sin(delta3-delta1-Teta(3,1)))...

+ (V3*Y(3,2)*V2*sin(delta3-delta2-Teta(3,2)))...

+ (V3*Y(3,3)*V3*sin(delta3-delta3-Teta(3,3)));

 

Vektor_Power_Mismatch = [P2;P3;Q3]

 

%Sehingga Matrik Jakobian Menjadi :

Jakobi_11 = V1*V2*Y(2,1)*sin(Teta(2,1) + delta1 - delta2) + V2*V3*Y(2,3)*sin(Teta(2,3) - delta2 + delta3)

Jakobi_12 = -V2*V3*Y(2,3)*sin(Teta(2,3) - delta2 + delta3)

Jakobi_13 = V2*Y(2,3)*cos(Teta(2,3) - delta2 + delta3)

Jakobi_21 = -V2*V3*Y(3,2)*sin(Teta(3,2) + delta2 - delta3)

Jakobi_22 = V1*V3*Y(3,1)*sin(Teta(3,1) + delta1 - delta3) + V2*V3*Y(3,2)*sin(Teta(3,2) + delta2 - delta3)

Jakobi_23 = V1*Y(3,1)*cos(Teta(3,1) + delta1 - delta3) + V2*Y(3,2)*cos(Teta(3,2) + delta2 - delta3) + 2*V3*Y(3,3)*cos(Teta(3,3))

Jakobi_31 = -V2*V3*Y(3,2)*cos(Teta(3,2) + delta2 - delta3)

Jakobi_32 = V1*V3*Y(3,1)*cos(Teta(3,1) + delta1 - delta3) + V2*V3*Y(3,2)*cos(Teta(3,2) + delta2 - delta3)

Jakobi_33 = - V1*Y(3,1)*sin(Teta(3,1) + delta1 - delta3) - V2*Y(3,2)*sin(Teta(3,2) + delta2 - delta3) - 2*V3*Y(3,3)*sin(Teta(3,3))

 

Jakobian = [Jakobi_11 Jakobi_12 Jakobi_13;Jakobi_21 Jakobi_22 Jakobi_23;Jakobi_31 Jakobi_32 Jakobi_33]

 

 

% Nilai-nilai koreksi untuk estimasi solusi:

 

Inverse_Jakobian = inv(Jakobian)

Nilai_Koreksi_Vektor_Tegangan = Inverse_Jakobian*Vektor_Power_Mismatch

 

% Nilai estimasi Iterasi ke-2

disp ('Iterasi 2');

Vektor_Tegangan_Baru = Vektor_Tegangan_Awal + Nilai_Koreksi_Vektor_Tegangan

 

delta2 = Vektor_Tegangan_Baru(1,1)

delta3 = Vektor_Tegangan_Baru(2,1)

V3 = Vektor_Tegangan_Baru(3,1)

 

P2 = -PG2 + PL2...

+ (V2*Y(2,1)*(V1)*cos(delta2-delta1-Teta(2,1)))...

+ (V2*Y(2,2)*(V2)*cos(delta2-delta2-Teta(2,2)))...

+ (V2*Y(2,3)*(V3)*cos(delta2-delta3-Teta(2,3)));

 

P3 = -PG3 + PL3...

+ (V3*Y(3,1)*V1*cos(delta3-delta1-Teta(3,1)))...

+ (V3*Y(3,2)*V2*cos(delta3-delta2-Teta(3,2)))...

+ (V3*Y(3,3)*V3*cos(delta3-delta3-Teta(3,3)));

 

Q3 = PG3 + PL3...

+ (V3*Y(3,1)*V1*sin(delta3-delta1-Teta(3,1)))...

+ (V3*Y(3,2)*V2*sin(delta3-delta2-Teta(3,2)))...

+ (V3*Y(3,3)*V3*sin(delta3-delta3-Teta(3,3)));

 

Vektor_Power_Mismatch = [P2;P3;Q3]

 

%Sehingga Matrik Jakobian Menjadi :

Jakobi_11 = V1*V2*Y(2,1)*sin(Teta(2,1) + delta1 - delta2) + V2*V3*Y(2,3)*sin(Teta(2,3) - delta2 + delta3)

Jakobi_12 = -V2*V3*Y(2,3)*sin(Teta(2,3) - delta2 + delta3)

Jakobi_13 = V2*Y(2,3)*cos(Teta(2,3) - delta2 + delta3)

Jakobi_21 = -V2*V3*Y(3,2)*sin(Teta(3,2) + delta2 - delta3)

Jakobi_22 = V1*V3*Y(3,1)*sin(Teta(3,1) + delta1 - delta3) + V2*V3*Y(3,2)*sin(Teta(3,2) + delta2 - delta3)

Jakobi_23 = V1*Y(3,1)*cos(Teta(3,1) + delta1 - delta3) + V2*Y(3,2)*cos(Teta(3,2) + delta2 - delta3) + 2*V3*Y(3,3)*cos(Teta(3,3))

Jakobi_31 = -V2*V3*Y(3,2)*cos(Teta(3,2) + delta2 - delta3)

Jakobi_32 = V1*V3*Y(3,1)*cos(Teta(3,1) + delta1 - delta3) + V2*V3*Y(3,2)*cos(Teta(3,2) + delta2 - delta3)

Jakobi_33 = - V1*Y(3,1)*sin(Teta(3,1) + delta1 - delta3) - V2*Y(3,2)*sin(Teta(3,2) + delta2 - delta3) - 2*V3*Y(3,3)*sin(Teta(3,3))

 

Jakobian = [Jakobi_11 Jakobi_12 Jakobi_13;Jakobi_21 Jakobi_22 Jakobi_23;Jakobi_31 Jakobi_32 Jakobi_33]

 

 

% Nilai-nilai koreksi untuk estimasi solusi:

 

Inverse_Jakobian = inv(Jakobian)

Nilai_Koreksi_Vektor_Tegangan = Inverse_Jakobian*Vektor_Power_Mismatch

 

% Nilai estimasi Iterasi ke-3

disp ('Iterasi 3');

Vektor_Tegangan_Baru = Vektor_Tegangan_Awal + Nilai_Koreksi_Vektor_Tegangan

 

delta2 = Vektor_Tegangan_Baru(1,1)

delta3 = Vektor_Tegangan_Baru(2,1)

V3 = Vektor_Tegangan_Baru(3,1)

 

P2 = -PG2 + PL2...

+ (V2*Y(2,1)*(V1)*cos(delta2-delta1-Teta(2,1)))...

+ (V2*Y(2,2)*(V2)*cos(delta2-delta2-Teta(2,2)))...

+ (V2*Y(2,3)*(V3)*cos(delta2-delta3-Teta(2,3)));

 

P3 = -PG3 + PL3...

+ (V3*Y(3,1)*V1*cos(delta3-delta1-Teta(3,1)))...

+ (V3*Y(3,2)*V2*cos(delta3-delta2-Teta(3,2)))...

+ (V3*Y(3,3)*V3*cos(delta3-delta3-Teta(3,3)));

 

Q3 = PG3 + PL3...

+ (V3*Y(3,1)*V1*sin(delta3-delta1-Teta(3,1)))...

+ (V3*Y(3,2)*V2*sin(delta3-delta2-Teta(3,2)))...

+ (V3*Y(3,3)*V3*sin(delta3-delta3-Teta(3,3)));

 

Vektor_Power_Mismatch = [P2;P3;Q3]

 

%Sehingga Matrik Jakobian Menjadi :

Jakobi_11 = V1*V2*Y(2,1)*sin(Teta(2,1) + delta1 - delta2) + V2*V3*Y(2,3)*sin(Teta(2,3) - delta2 + delta3)

Jakobi_12 = -V2*V3*Y(2,3)*sin(Teta(2,3) - delta2 + delta3)

Jakobi_13 = V2*Y(2,3)*cos(Teta(2,3) - delta2 + delta3)

Jakobi_21 = -V2*V3*Y(3,2)*sin(Teta(3,2) + delta2 - delta3)

Jakobi_22 = V1*V3*Y(3,1)*sin(Teta(3,1) + delta1 - delta3) + V2*V3*Y(3,2)*sin(Teta(3,2) + delta2 - delta3)

Jakobi_23 = V1*Y(3,1)*cos(Teta(3,1) + delta1 - delta3) + V2*Y(3,2)*cos(Teta(3,2) + delta2 - delta3) + 2*V3*Y(3,3)*cos(Teta(3,3))

Jakobi_31 = -V2*V3*Y(3,2)*cos(Teta(3,2) + delta2 - delta3)

Jakobi_32 = V1*V3*Y(3,1)*cos(Teta(3,1) + delta1 - delta3) + V2*V3*Y(3,2)*cos(Teta(3,2) + delta2 - delta3)

Jakobi_33 = - V1*Y(3,1)*sin(Teta(3,1) + delta1 - delta3) - V2*Y(3,2)*sin(Teta(3,2) + delta2 - delta3) - 2*V3*Y(3,3)*sin(Teta(3,3))

 

Jakobian = [Jakobi_11 Jakobi_12 Jakobi_13;Jakobi_21 Jakobi_22 Jakobi_23;Jakobi_31 Jakobi_32 Jakobi_33]

 

 

% Nilai-nilai koreksi untuk estimasi solusi:

 

Inverse_Jakobian = inv(Jakobian)

Nilai_Koreksi_Vektor_Tegangan = Inverse_Jakobian*Vektor_Power_Mismatch

 

% Nilai estimasi Iterasi ke-4

disp ('Iterasi 4');

Vektor_Tegangan_Baru = Vektor_Tegangan_Awal + Nilai_Koreksi_Vektor_Tegangan

 

delta2 = Vektor_Tegangan_Baru(1,1)

delta3 = Vektor_Tegangan_Baru(2,1)

V3 = Vektor_Tegangan_Baru(3,1)

 

P2 = -PG2 + PL2...

+ (V2*Y(2,1)*(V1)*cos(delta2-delta1-Teta(2,1)))...

+ (V2*Y(2,2)*(V2)*cos(delta2-delta2-Teta(2,2)))...

+ (V2*Y(2,3)*(V3)*cos(delta2-delta3-Teta(2,3)));

 

P3 = -PG3 + PL3...

+ (V3*Y(3,1)*V1*cos(delta3-delta1-Teta(3,1)))...

+ (V3*Y(3,2)*V2*cos(delta3-delta2-Teta(3,2)))...

+ (V3*Y(3,3)*V3*cos(delta3-delta3-Teta(3,3)));

 

Q3 = PG3 + PL3...

+ (V3*Y(3,1)*V1*sin(delta3-delta1-Teta(3,1)))...

+ (V3*Y(3,2)*V2*sin(delta3-delta2-Teta(3,2)))...

+ (V3*Y(3,3)*V3*sin(delta3-delta3-Teta(3,3)));

 

Vektor_Power_Mismatch = [P2;P3;Q3]

 

%Sehingga Matrik Jakobian Menjadi :

Jakobi_11 = V1*V2*Y(2,1)*sin(Teta(2,1) + delta1 - delta2) + V2*V3*Y(2,3)*sin(Teta(2,3) - delta2 + delta3)

Jakobi_12 = -V2*V3*Y(2,3)*sin(Teta(2,3) - delta2 + delta3)

Jakobi_13 = V2*Y(2,3)*cos(Teta(2,3) - delta2 + delta3)

Jakobi_21 = -V2*V3*Y(3,2)*sin(Teta(3,2) + delta2 - delta3)

Jakobi_22 = V1*V3*Y(3,1)*sin(Teta(3,1) + delta1 - delta3) + V2*V3*Y(3,2)*sin(Teta(3,2) + delta2 - delta3)

Jakobi_23 = V1*Y(3,1)*cos(Teta(3,1) + delta1 - delta3) + V2*Y(3,2)*cos(Teta(3,2) + delta2 - delta3) + 2*V3*Y(3,3)*cos(Teta(3,3))

Jakobi_31 = -V2*V3*Y(3,2)*cos(Teta(3,2) + delta2 - delta3)

Jakobi_32 = V1*V3*Y(3,1)*cos(Teta(3,1) + delta1 - delta3) + V2*V3*Y(3,2)*cos(Teta(3,2) + delta2 - delta3)

Jakobi_33 = - V1*Y(3,1)*sin(Teta(3,1) + delta1 - delta3) - V2*Y(3,2)*sin(Teta(3,2) + delta2 - delta3) - 2*V3*Y(3,3)*sin(Teta(3,3))

 

Jakobian = [Jakobi_11 Jakobi_12 Jakobi_13;Jakobi_21 Jakobi_22 Jakobi_23;Jakobi_31 Jakobi_32 Jakobi_33]

 

 

% Nilai-nilai koreksi untuk estimasi solusi:

 

Inverse_Jakobian = inv(Jakobian)

Nilai_Koreksi_Vektor_Tegangan = Inverse_Jakobian*Vektor_Power_Mismatch

 

% Nilai estimasi Iterasi ke-5

disp ('Iterasi 5');

Vektor_Tegangan_Baru = Vektor_Tegangan_Awal + Nilai_Koreksi_Vektor_Tegangan

 

delta2 = Vektor_Tegangan_Baru(1,1)

delta3 = Vektor_Tegangan_Baru(2,1)

V3 = Vektor_Tegangan_Baru(3,1)

 

P2 = -PG2 + PL2...

+ (V2*Y(2,1)*(V1)*cos(delta2-delta1-Teta(2,1)))...

+ (V2*Y(2,2)*(V2)*cos(delta2-delta2-Teta(2,2)))...

+ (V2*Y(2,3)*(V3)*cos(delta2-delta3-Teta(2,3)));

 

P3 = -PG3 + PL3...

+ (V3*Y(3,1)*V1*cos(delta3-delta1-Teta(3,1)))...

+ (V3*Y(3,2)*V2*cos(delta3-delta2-Teta(3,2)))...

+ (V3*Y(3,3)*V3*cos(delta3-delta3-Teta(3,3)));

 

Q3 = PG3 + PL3...

+ (V3*Y(3,1)*V1*sin(delta3-delta1-Teta(3,1)))...

+ (V3*Y(3,2)*V2*sin(delta3-delta2-Teta(3,2)))...

+ (V3*Y(3,3)*V3*sin(delta3-delta3-Teta(3,3)));

 

Vektor_Power_Mismatch = [P2;P3;Q3]

 

 

 

i) Tunjukkan hasil perhitungan aliran daya yang saudara dapatkan dari 5 iterasi tersebut.

Jawab :

 

z =

 

   0.0200 + 0.0300i

   0.0800 + 0.2400i

   0.0600 + 0.1800i

V1 =

    1.0600

delta1 =

     0

PL1 =

     0

QL1 =

     0

V2 =

     1

PG2 =

    40

PL2 =

    30

QL2 =

    20

PG3 =

     0

QG3 =

    45

PL3 =

    60

QL3 =

   15.3800

y =

  15.3846 -23.0769i

   1.2500 - 3.7500i

   1.6667 - 5.0000i

y12 =

  15.3846 -23.0769i

y13 =

 1.2500 - 3.7500i

y23 =

  1.6667 - 5.0000i

Ybus =

  16.6346 -26.8269i -15.3846 +23.0769i  -1.2500 + 3.7500i

 -15.3846 +23.0769i  17.0513 -28.0769i  -1.6667 + 5.0000i

  -1.2500 + 3.7500i  -1.6667 + 5.0000i   2.9167 - 8.7500i

Y =

   31.5657   27.7350    3.9528

   27.7350   32.8490    5.2705

    3.9528    5.2705    9.2233

delta2 =

     0

delta3 =

     0

V3 =

     1

Vektor_Tegangan_Awal =

 

     0

     0

     1

Vektor_Power_Mismatch =

  -10.9231

   59.9250

   59.775

Jakobi_11 =

   29.4615

Jakobi_12 =

    -5

Jakobi_13 =

   -1.6667

Jakobi_21

    -5

Jakobi_22 =

    8.9750

Jakobi_23 =

    2.8417

Jakobi_31 =

    1.6667

Jakobi_32 =

   -2.9917

Jakobi_33 =

    8.5250

Jakobian =

 

   29.4615   -5.0000   -1.6667

   -5.0000    8.9750    2.8417

    1.6667   -2.9917    8.5250

Inverse_Jakobian =

    0.0375    0.0210    0.0003

    0.0209    0.1120   -0.0332

    0.0000    0.0352    0.1056

Nilai_Koreksi_Vektor_Tegangan =

    0.8684

    4.4949

    8.4194

Iterasi 1

Vektor_Tegangan_Baru =

    0.8684

    4.4949

    9.4194

delta2 =

    0.8684

delta3 =

    4.4949

V3 =

    9.4194

Vektor_Power_Mismatch =

   51.0301

  276.8460

  905.5870

Jakobi_11

   -6.0971

Jakobi_12 =

   34.3483

Jakobi_13 =

    3.8053

Jakobi_21 =

   48.9847

Jakobi_22 =

  -69.2499

Jakobi_23 =

   50.4944

Jakobi_31 =

    8.0659

Jakobi_32 =

  -41.9331

Jakobi_33 =

  172.1906

Jakobian =

   -6.0971   34.3483    3.8053

   48.9847  -69.2499   50.4944

    8.0659  -41.9331  172.1906

Inverse_Jakobian =

    0.0442    0.0274   -0.0090

    0.0362    0.0049   -0.0022

    0.0067   -0.0001    0.0057

 

 

Nilai_Koreksi_Vektor_Tegangan =

    1.6818

    1.1785

    5.4674

Iterasi 2

Vektor_Tegangan_Baru =

    1.6818

    1.1785

    6.4674

delta2 =

    1.6818

delta3 =

    1.1785

V3 =

    6.4674

Vektor_Power_Mismatch =

   39.3224

  177.4369

  385.1159

Jakobi_11 =

   47.0246

Jakobi_12 =

  -33.5262

Jakobi_13 =

    0.9515

Jakobi_21 =

  -23.1285

Jakobi_22 =

   40.8757

Jakobi_23 =

   37.0215

Jakobi_31 =

   25.0389

Jakobi_32 =

   -4.5603

Jakobi_33 =

  106.8597

Jakobian =

   47.0246  -33.5262    0.9515

  -23.1285   40.8757   37.0215

   25.0389   -4.5603  106.8597

Inverse_Jakobian =

    0.0460    0.0363   -0.0130

    0.0345    0.0508   -0.0179

   -0.0093   -0.0063    0.0116

Nilai_Koreksi_Vektor_Tegangan =

    3.2511

    3.4721

    2.9903

Iterasi 3

Vektor_Tegangan_Baru =

    3.2511

    3.4721

    3.9903

delta2 =

    3.2511

delta3 =

    3.4721

V3 =

    3.9903

Vektor_Power_Mismatch =

    9.7252

  104.1785

  195.1179

Jakobi_11 =

   -8.0889

Jakobi_12 =

  -18.0089

Jakobi_13 =

   -2.7220

Jakobi_21 =

  -20.9241

Jakobi_22 =

    4.2052

Jakobi_23 =

   22.7099

Jakobi_31 =

    2.1161

Jakobi_32 =

   -2.2625

Jakobi_33 =

   68.7767

Jakobian =

   -8.0889  -18.0089   -2.7220

  -20.9241    4.2052   22.7099

    2.1161   -2.2625   68.7767

Inverse_Jakobian =

   -0.0115   -0.0420    0.0134

   -0.0502    0.0186   -0.0081

   -0.0013    0.0019    0.0139

Nilai_Koreksi_Vektor_Tegangan =

   -1.8698

   -0.1370

    2.8900

Iterasi 4

Vektor_Tegangan_Baru =

   -1.8698

   -0.1370

    3.8900

delta2 =

   -1.8698

delta3 =

   -0.1370

V3 =

    3.8900

Vektor_Power_Mismatch =

  -29.6718

  117.1583

  174.5297

Jakobi_11 =

  -32.3241

Jakobi_12 =

    9.5349

Jakobi_13 =

   -4.6658

Jakobi_21 =

   -3.2620

Jakobi_22 =

   17.8759

Jakobi_23 =

   26.0395

Jakobi_31 =

  -20.2409

Jakobi_32 =

   13.0231

Jakobi_33 =

   63.4796

Jakobian =

  -32.3241    9.5349   -4.6658

   -3.2620   17.8759   26.0395

  -20.2409   13.0231   63.4796

Inverse_Jakobian =

   -0.0263    0.0220   -0.0110

    0.0106    0.0709   -0.0283

   -0.0106   -0.0075    0.0181

Nilai_Koreksi_Vektor_Tegangan =

    1.4458

    3.0539

    2.5839

Iterasi 5

Vektor_Tegangan_Baru =

    1.4458

    3.0539

    3.5839

delta2 =

    1.4458

delta3 =

    3.053

V3 =

    3.5839

Vektor_Power_Mismatch =

   11.6055

  121.5691

  180.8612

>> 

0 Response to "contoh soal final beserta jawaban Analisa Sistem Tenaga"

Post a Comment